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Piecewise parabolic maps constitute a family of maps in the fully developed 
chaotic state and depending on a parameter that can be smoothly tuned to a 
weakly intermittent situation. Approximate analytic expressions are derived for 
the corresponding correlation functions. These expressions produce power-law 
decay at intermittency and a crossover from power-law decay to exponential 
decay below intermittency. It is shown that the scaling functions and the 
exponent of the power law depend on the kind of the correlations. 
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I N T R O D U C T I O N  

Intermit tency is a fascinating phenomenon  for two reasons. The first is the 
obvious change between chaotic  and laminar  or at least less chaotic 
behavior: In simple models this happens if in the region of  interest there is 
no stable a t t ractor  and at the same time there exists a marginally unstable 
fixed point  II~ or  a marginally unstable a t t ractor  (crisis-induced intermit- 
tency ~2'3~) or  an at t ractor  becoming unstable due to noise or due to the 
driving of  another  (strange) a t t ractor  (on -o f f  intermittencyl4"SI). Under  
these circumstances the system will again and again come close to the 
marginally unstable fixed point  (or  at tractor,  etc.) and while staying there 
the system remains less chaotic. Second, there is a suggestive analogy 
between the t1:ansition to intermittency and phase transitions of  higher 
order  in statistical physics 16~ or  the percolation transition of  percolating 
clusters. In fact when approaching  intermittency the correlations no longer 
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decay exponentially, but rather follow a power law. One observes crossover 
behavior and critical slowing down. This is not unexpected because the 
larger and larger time intervals in which the dynamical system behaves 
"laminar" correspond to larger and larger ordered clusters that are observed 
near thermodynamic phase transitions. Correspondingly, renormalization 
methods have been applied to the intermittent transition. In particular it 
was shown c7) for weak intermittency that at the intermittent transition the 
correlations decay with a power law depending on the cusp of the map and 
the kind of the marginally unstable fixed point. 

In this paper we calculate the scaling properties of the correlation 
functions for the piecewise parabolic map ~8-~~ in the neighborhood of the 
intermittent transition. We will show that in complete analogy to phase 
transitions of statistical physics a correlation function c]2(m) can be written 
as a product of a singular expression times a scaling function 

1 
c,2(m) oc --S~,(me), - 1  <,tt~< 1 (1) 

I111 + t,t 

where m is the number of iterations between the first and second 
measurements and e corresponds to T -  T,. in thermodynamic phase trans- 
itions. 3 In particular at e = 0 the transition to intermittency is reached. We 
will show furthermore that the scaling function S as well as the exponent 
/t depend on the type of correlations. But the relation - 1 </ t  ~< 1 holds and 
all scaling functions are simply related to each other. 

The procedure we have chosen to calculate the correlation functions is 
based on determination of the eigenfunctions of the Frobenius-Perron 
operator connected to the piecewise parabolic map. This procedure is 
possible for the intermittent cases where the invariant measure remains 
smooth. The eigenfunctions and eigenvalues have been determined else- 
wherever. J2) and the results are reported briefly in Section 2. Using these 
results in Section3, we can determine how the m th power of the 
Frobenius-Perron operator (m arbitrarily high) acts on analytic functions. 
The result is valid in the neighborhood of intermittency and appropriate 
for calculating the correlation functions. Thus we can predict power-law 
decay at intermittency, crossover from power-law decay to exponential 
decay below intermittency, and a dependence of the power on the proper- 
ties of the correlations at 0. These predictions are compared with numerical 
results in Section 4. A conclusion ends the paper. 

3 F o r  ii = 1 a l o g a r i t h m i c  t e r m  m a y  b e  p r e s e n t  a s  wel l ;  cf. S e c t i o n  3. 
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2. THE MODEL 

1201 

We will discuss the road to intermittency for the piecewise parabolic 
map 

1 
x' = f i t ' ,  x) = ~  { 1 + r -  [( 1 - r)-" + 4 r l l  - 2xl ] ,/'-} (2) 

For r =  0 one obtains the tent map 

x ' = f ( r = 0 ,  x ) =  1 - 1 1 - 2 x l  (3) 

and for r =  1 one obtains the weak intermittent map 

x ' = f ( r , x ) = l - - i l - - 2 x l  1/2, f ' ( r = l , 0 ) = l  (4) 

Weak intermittency is characterized by the existence of a smooth invariant 
measure which can be given analytically in the case of the piecewise 
parabolic map (81 

p(x)  = r +  1 - 2 r x  (5) 

Note that Eq. (5) is valid for any r in [0, 1], connected to the fact that the 
transition to intermittency is achieved by maintaining fully developed 
chaos. (s~ Consequently the correlation function 

ci2(m) = ( c l ( f m ( x ) )  C2(X) ) -- ( C]) (  C,_) (6) 

can be calculated for analytic c,_(x) if the eigenfunctions of the 
Frobenius-Perron operator 5 ~ are known in the space of functions analytic 
in a neighborhood of [0, 1 ]. 

The eigenfunctions of the Frobenius-Perron operator have been 
calculated elsewhere (j]" izl by use of two different methods. Here we report 
the result only: Near intermittency the eigenequation of 5O 

1 
2~o(x) = 5o4o(x) = ~ , ~  q~(y) (7) 

.,-=.rl,-,:,) I / ( ' ,  Y)I 

becomes simpler because the second branch of the Frobenius-Perron 
operator 5O can be neglected in a good approximation. The approximate 
eigenvalue equation 

1 
2q~(f(r, x)) - / ~ x  "----------~lf'(r, ~o(x) (8) 
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is appropriate for eigenfunctions well localized near 0. Solutions of Eq. (8) 
are 

1 ( x ' ~ "  
~o,,(x) = (x + e/a) 2 \ ~ J  

).,, = e -~ �9 e -'":, 11 = 0, 1 ,... 

(9) 

with 

f ( x ) = x  + ~ x  + a x  2+ . . .  

It is worth emphasizing that Eq. (9) explicitly displays a universal behavior 
of the spectral properties near intermittency, as these are to a good 
approximation independent of the precise form of the weakly intermittent 
map, except for the specific values of the parameters e and a. In the 
piecewise parabolic map (2) ~ and a can be expressed as 

__j~ 

1+1" 

41" 
a 

(1 + r )  3 

(10) 

The set {q~,,} is comph, te (see ref. 11 and below), but has the disadvantage 
that the invariant measure p is an eigenfunction [see Eq. (5)] with eigen- 
value 1 but it is not included in this set. We can correct this 4 by introducing 
the set { ~9,,,}, 

I / ] _  I ~ ' p  

~,,= q,.-K,p for n~>O 
(11) 

with 

el 
]~" = Jo ~o,,(x) dx 

2 _ 1 = I  

2 . = e - ~ . e  .... for n>~O 

4 Note  that the adjoint  eigenfunction with eigenvalue 1 is 1 itself 
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This set represents a good approximation for the eigenfunction near r = 1, 
the intermittent transition point. 5 

3. CALCULATION OF THE CORRELATION FUNCTION 

If a smooth invariant measure p exists, the correlation function can be 
written as 

t ,  1 
cl2(m) = ] cl(f" '(x)) c2(x)p(x) d x -  ( c l ) ( c 2 )  (12) 

ao 

with 

(c i )  = c i (x )p(x)dx  

Using the Frobenius-Perron operator,  we may write instead 

I 
cl2(m) = ~  cl(x)[~" 'c2p](x)  d x -  ( c l ) ( c 2 )  

ao 

expanding 

(13) 

d2(x) = c2(x) p(x) (14) 

into a series of the { ~,,}, we can calculate 

d2(m, x) = s (15) 

However, the set {q~,} is much easier to handle than the set {~,,}. 
Fortunately, we can use {~o,,} instead of {~,,,}, replacing ci by 

~i(x) = G(x) - (c i )  (16) 

To see this, we note first that in an expansion of d,_ the eigenfunction ~ _  
is not needed, since (~_,) = 0. Second, since ( ~ , )  = 0, the correction terms 
fl, p do not contribute to the correlation function c,2(m). So from now on 
we will use (~ instead of c~. 

Next we perform a conjugation using the diffeomorphism 

x+e/~  1 +  (17) 

~ Note  tha t  the { ~,,,} also cons t i tu te  a comple te  and  independent  set by cons t ruc t ion .  
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In the new representat ions the approximate  eigenfunctions {~o,,} are just 
powers 

{ ~o,,}--*{y"} (18) 

which makes this set very convenient.  6 In the new representat ion we find 

d2(m, y) = f.~"'c/_,(y) (19) 

with 

1 d,(m, h-l(y))  d2(m, y ) = h , ( h _ ~ ( y ) )  _ 

~,_(y) _ 1 
h,(h-~(y) ) d2(h-~( Y) ) 

But d2 is analytic in the unit circle with respect to y; therefore it can be 
expanded into a power  series 

d,(y)= F,, a,, v" 
v = O  

and 

~ '" 'd_ . (y)= ~. a,,~"'y" 
v = O  

In a very good approximat ion  

fe"y"= 2',',' y"= 2~'(2g' y)", 2 o = e - ~ <  1 

Consequently,  

G/'"'dz(y) = 2g'd2(2g' y) (20) 

or in the original system 

' ( ) s = ),;' [( 1 - 2~')(a/e) x + 1 ] 2 d,  2•' x - ( 1 - 2 ' d ' ) ( a / e ) x + l )  (21) 

Note  that the argument  in d2 remains small and only the behavior  of ( :  at 
0 is of  importance.  In the following we assume &_(0)r Then for e ~ 1 the 

At the same time it is now obvious that the set {r is complete. 
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expression ..~'"dz(x) is strongly peaked around O. Moreover, the formula 
fulfills the condition 

s163 = ~ " + " ' d z ( x  ) (22) 

The decrease of ct2(m ) depends now on ( t (x)  in the neighborhood of 
0. Let us consider the case 7 

g l ( x ) = x  ~' for x-~O,  l t > - I  (23) 

Then, using Eqs. (13) and (21), we obtain 

f j  ?l(f"'(x)) ( 2 ( x )p ( x )  dx 

[(1 - 2'~')(a/e) ] ''+ ~ ~2(0) p(O) ~ dy 

As long as l t < 1 the upper limit of the integral does not play a role for 
large m and small e. On the other hand, for it >/I the upper limit is impor- 
tant. As a consequence, the correlation functions can be written in the 
asymptotic limit as a product of a power in m times a scaling function St, 
in the following way: 

1 
c t 2 ( m ) ~ c o n s t . - ~ S l ( m e ) ,  /~>1 

/7~/- 

1 
c~2(m) ~ const . ~  S,(me), -- I <It < 1 

(24) 

Here S~, is the scaling function is given by 

e~-  
'~ ' '~ ( l - - e - - - )  ' '+ l  (25) 

The case p = 1 is special. It contains a logarithmic term and cannot be 
expressed as a product of a scaling function and a function of m. At inter- 
mittency one obtains 

1 
clz(m) --* const . ~  in m (26) 

D'U 

It follows from these equations that: 

7 ( c l )  is n o t  d e f i n e d  f o r / i  ~< - 1. 
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(i) For  m > 1/e the correlat ion function c,2(m) decays exponentially 
fast and for m < l/e, cL~(m) decays as a power law indicating a crossover 
behavior and a critical slowing down when intermittency is reached. 

(ii) At intermittency the decay of  c:_(m) cannot  be faster than l/nil-. 
On the other  hand, for it --* - 1 it becomes extremely slow. The physical 
reason is that it = - 1 corresponds to a nonintegrable singularity situated 
at the marginally unstable fixed point  0 of  the intermittent map. 

(iii) A decay faster than 1/m is only possible if ~ ( 0 ) - - - 0  for r =  1. 

Numerical  examples are shown in the next section. 

4. N U M E R I C A L  R E S U L T S  

We did numerical checks on Eq. (24) in a range of  m values in which 
the correlation function itself changes by several orders of  magni tude  such 
that a small error in the scaling function or the power law would lead to 
strong disagreement between analytic formulas and the numerical  results. 

We begin with the case It = 0 by choosing first s 

10 if x < B  c l ( x ) = c , ( x ) =  (27) 
- otherwise 

For  comput ing  the correlat ion function analytically we use the asymptot ic  
formula taking into account  the finite integration limit. Then we obtain the 
analytic expression c , , , (m)  

c,,.,(m) =--1 So(me) a6,(O) (_,(0) p(0) :|B~'-:.g',,,/,, 1 dv 
�9 n l  . o y 2  + I " 

(28) 

Numerical ly the correlat ion function c.2(nl) was calculated by performing 
2 •  iterations for the cases 9 r = 0 . 9 8 ,  0.99, and 0.9999, setting 
B = 5 • 10-2. We plotted the ratio 

c~(m) 
R(m ) - - -  (29) 

ca,~(m) 

According to the results of  the previous section [cf. Eq. (24)] ,  R(m, e) 
should be approximately  I. This is verified in Fig. 1. 

s In this section we choose lbr c', a step function because of its numerical advantages. Of 
course, the step function is not analytic. However, cutting the tail of its Fourier series, we 
have an analytic function arbitrarily close to a step function. 

9 For r=  1 the cusp of the map at x = 1/2 requires much higher precision in the numerics. 
Since there is nothing special in r=  1 compared to r=  0.9999, we chose the latter value. 
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Fig. I. The ratio between the numerically calculated correlation function and the analytic 
expression with q and c, taken from Eq. (27). Solid line, r=0.9999; dashed line, r=0.99: 
dotted line, r= 0.98. 

Next we checked Eq. (24) with/ l  = - 1/2 by choosing 

cj(x}= { ~  if x < B  

otherwise 

c~(.,') = {0 if x < B  
- otherwise 

(30) 

For computing the correlation function c,.a(m) we proceed as before and 
obtain 

c,,,,(m ) = 1~ S_  re(me) x/~t (,(_ 0 ) p(O ) I :  ~ J - ).i;'~l,,/~ 
x/~y(y ~ + 1) 

dy (31) 

Numerically the correlation function cL,(m) was calculated for r=0.98,  
0.99, and 0.9999, setting again B = 5  x 10--" and doing 2 x l 0  9 iterations. 
The results for the ratio R(m) are shown in Fig. 2. We found that in 
particular for r =  0.98 the statistics became poor beyond m = 400, because 
this was beyond the crossover, and due to the exponential decay the value 
of the correlation function became extremely small. Nevertheless, below 
that value the numerical results clearly corroborate the analytic ones. 
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Fig. 2. The ratio between the numerically calculated correlation function and the analytic 
expression with c~ and c_, taken from Eq. (30). Solid line, r=0.9999; dashed line, r=0.99; 
dotted line, r =  0.98. 

As a last example we present numerical checks on Eqs. (24) and (26) 
by choosing 

{0 - b x 2 x < B  
c~(x) = otherwise 

(32) 
x<B 
otherwise 

c2/x,_-{1 o 
Here b is determined such that 

(x-bx,_) = 0  in the intermittent case (33) 

In the same manner as before we computed Cana(m ) using B =  
5 x 10 -2. The results for the ratio R(m) are shown in Fig. 3. Again for 
r =  0.98 the statistics is poor beyond m = 300, but below that value the 
results are remarkably good again. 

One observes from the figures that R(m)-*cons t  is much better 
fulfilled than R(m)---, 1. This has a simple explanation: the approximate 
eigenfunctions corresponding to the upper edge of the spectrum are peaked 
near zero and the expansion coefficients of d2 are sufficiently accurate only 
if d2 is strongly concentrated around 0. Even if it is not, ~ k d  2 with increas- 
ing k has this property; therefore our method yields the correct 
asymptotics. Hence, when d2 does not satisfy the above condition the initial 
deviations in the expansion coefficients will lead to R(m)--* const rather 
than R(m)~ 1. 
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Fig. 3. The ratio between the numerically calculated correlation function and the analytic 
expression with c I and c 2 taken from Eq. (32). Solid line, r--0.9999; dashed line, r=0.99:  
dotted line, r =  0.98. 

5. CONCLUSION 

The piecewise parabolic map [cf. Eq. (2)] generates weak intermit- 
tency in the limit r--* 1. Exploiting the spectral properties of the corre- 
sponding Frobenius-Perron operator, we have derived analytic expressions 
for the correlation functions 

Cl2(Fn) = (e l ( f  "'(X)) C2(X))  - -  ( C  1 ) ( C 2 )  

which describes the asymptotics correctly. Assuming a c2 with nonvanish- 
ing cz(0), a power-law decay is predicted at intermittency depending on the 
behavior of Cl(X) at 0: 

1 
Cl(X) - - (Cl )  oc x~' for small x: cl2(m) o c ~  l t < l  (34) ~11 t + "~ 

1 
e l ( x ) -  ( c l )  c c x  ~' for small x: cl2(m) cc --~, gt> 1 (35) 

m -  

In m 
Cl(X~--(Cl)  oC xforsmal lx :  c,2(m) oc rn~ (36) 

Below intermittency the analytic expressions predict a crossover from 
power-law decay to exponential decay governed by scaling functions. All 
these predictions are confirmed quantitatively by the numerical computa- 
tions. 



1210 Lustfeld et  al.  

AC KNOWLEDG M ENTS 

This work has been supported by the International Relations Offices 
of Germany and Hungary, project X231.3, and partially by the Hungarian 
Academy of Sciences under grants OTKA 2090 and OTKA F.4286. One of 
the authors (H.L.) is grateful for the hospitality of the Institute for Solid 
State Physics, E6tv6s University, Budapest, where part of the work was 
done. Two of the authors (J.B. and Z.K.) are grateful for the hospitality of 
the Institut fiir Festk6rperforschung, Forschungszentrum Jfilich GmbH, 
where the remainder of the work was done. 

REFERENCES 

1. Y. Pomeau and P. Manneville, Commun. Math. Phys. 74:189 (1980). 
2. C. Grebogi, E. Ott, and J. A. Yorke, Phys. Rev. Lett. 48:1507 (1982). 
3. C. Grebogi, E. Ott, F. J. Romeiras, and J. A. Yorke, Phys. Rev. A 36:5365 (1987). 
4. N. Platt, E. A. Spiegel, and C. Tresser, Phys. Rev. Lett. 70:279 (1993). 
5. A. Cenys and H. Lustfeld, J. Phys. A: Math. Gen. 29:11 (1996). 
6. M. J. Feigenbaum, I. Procaccia, and T. Tel, Phys. Rev. A 39:5359 (1989). 
7. S. Grossmann and H. Horner, Z. Phys. B 60:79 (1985). 
8. G. Gy6rgyi and P. Sz~pfalusy, Z. Phys. B 55:179 (1984). 
9. P. Sz~pfalusy and G. Gy6rgyi, Phys. Ree. A 33:2852 (1986). 

10. A. Csordfis and P. Sz6pfalusy, Phys. Rev. A 38:2582 (1988). 
11. Z. Kaufmann, H. Lustfeld, and J. Bene, Phys. Rev. E 53:1416 (1996). 
12. J. Bene, Z. Kaufmann, and H. Lustfeld, Preprint. 

Commun&,ated by J, L. Lebowit: 


